Sabtu, 05 Desember 2009

BENDA TEGAR DAN MOMENTUM SUDUT


Benda tegar adalah istilah yang sering digunakan dalam dunia Fisika untuk menyatakan suatu benda yang tidak akan berubah bentuknya setelah diberikan suatu gaya pada benda itu. Pada sebuah benda tegar, setiap titik harus selalu berada pada jarak yang sama dengan titik-titik lainya.

Momentum Linear

Momentum adalah ukuran kesukaran untuk memberhentikan suatu benda yang sedang bergerak. Makin sukar memberhentikannya, makin besar momentumnya.

m = massa benda (Kg)
v = kecepatan (m/s)

Contoh Soal:

Sebuah mobil massanya 1 ton bergerak dengan kecepatan 90 km/jam. Berapakah besarnya momentum mobil tersebut?

Penyelesaian:

m = 1 ton = 1000 kg
v = 90 km/jam = 25 m/s

p = m.v
p = 1000.25
p = 25000 Ns

Hukum Kekekalan Mementum

Hukum kekekalan momentum untuk peristiwa tumbukan, yaitu:
Jumlah momentum benda-benda sebelum dan sesudah tumbukan adalah tetap, asalkan tidak ada gaya-gaya luar yang bekerja pada benda itu.

v1, v2 = kecepatan sebelum tumbukan
v1', v2' = kecepatan setelah tumbukan

Hukum kekekalan momentum juga bukan hanya berlaku untuk peristiwa tumbukan, tetapi juga berlaku secara umum untuk interaksi antara dua buah benda. Misalnya peristiwa gerakan roket, peluru yang ditembakkan dari senapan, orang menendang bola, orang naik perahu, dan lain-lain.

Momentum adalah besaran vektor, yang berarti dia memiliki besar dan arah. Untuk momentum satu dimensi arah dapat kita tuliskan dalam bentuk tanda positif dan negatif. Misalnya arah ke kanan positif dan ke kiri negatif. Karena momentum besaran vektor, maka resultan momentum mengikuti aturan penjumlahan vektor, misalnya:

px = p1x + p2 ; py = p1y

secara umum resultan momentum dapat ditulis:

p1 = momentum benda 1
p2 = momentum benda 2

Px = jumlah komponen momentum pada sumbu x
Py = jumlah komponen momentum pada sumbu y

Contoh Soal:

Seorang atlit penembak memegang sebuah senapan yang massanya 4 kg dengan bebas sehingga senapannya bebas bergerak ke belakang ketika sebutir peluru yang massanya 5 g keluar dari moncong senapan dengan kecepatan horizontal 300 m/s. Berapa kecepatan hentakan senapan ketika peluru ditembakkan?

Penyelesaian:

m1 = 4 kg
m2 = 5 g = 0,005 kg
v1 = 0 m/s
v2 = 300 m/s

m1.v1 + m2.v2 = m1.v1' + m2.v2'

0 + 0 = 4.v1' + 0,005 . 300
0 = 6.v1' + 1,5
v1' = -1,5 / 6 = -0,25 m/s

momentum sudut adalah momentum yang terjadi pada benda atau lintasan yg melingkar nah dalam momentum sudut ada yang dikenal dengan sebutan torsi . sebenarnya torsi itu apa ya??

torsi itu = momen gaya yang menyebabkan benda berputar terhadap lengan nah lengan itu merupakan jarak antar poros dengan gaya . nah berarti dalam matematikanya dapat kita tuliskan

torsi ~ F | l
Torsi = F . l
torsi = F . sin ø . l

selain torsi ada juga yang disebut dengan inersia

momen inersia = ukuran kelembaman untuk benda yang bergerak rotasi dan dipengaruhi massa

kalau dituliskan dalam matematikanya

I = mr^2
I = Kg m^2
m = kg
r = m

nah kalau momen inersianya lebih dari 1 partikel berarti ya tinggal tambahin aja atau stigma

nah setelah tau sedikit tentang torsi

dan inersia langsung aja kita bahas tentang hitungan matematis momentum sudut

kalo pada momentum linier itu kita kenal

P = mv
nah kalau pada momentum sudut

L = P
L = r . P
L = r. (mv)
L = r.m (w.r)
L = mr^2 . w

L = I . w

L = Momentum sudut
I = momen inersia
w = kec. sudut


nah gimana kalo ditanya torsi tapi kalo diketahuinya I (moment inersia) atau L (momentum sudut )


nih ada sedikit perhitungan matematika

F . r = mr. a
= mr. alfa . r
F. ^t = ^P
F. ^t = ^L
torsi .^t = ^L
torsi ^t= mr^2 w.t - m^2 w t

torsi ^t = I Wt - I Wo

= Lt - Lo

nah pada momentum sudut berlaku pula hukum kekelan momentum

L = L'
I .w + I. w = I . w' + I . w'

dah kalo itu mah ga usah dikasih tahu lagi palingan juga udah tau

nah didalam momentum sudut sehari- hari kita temukan apa yang disebut dengan menggelinding

nah dari nama nya aja udah tau

menggelinding : benda yg bergerak rotasi dan bergerak translasi secara bersama - sama

V = S/t...... [GLB




GAYA PEGAS

Elastisitas dan Hukum Hooke

Bila suatu benda dikenai sebuah gaya dan kemudian gaya tersebut dihilangkan, maka benda akan kembali ke bentuk semula, berarti benda itu adalah benda elastis. Namun pada umumnya benda bila dikenai gaya tidak dapat kembali ke bentuk semula walaupun gaya yang bekerja sudah hilang. Benda seperti ini disebut benda plastis. Contoh benda elastis adalah karet ataupun pegas. Bila pegas ditarik melebihi batasn tertentu maka benda itu tidak akan elastis lagi. Lalu bagaimanakah hubungan pertambahan panjang dengan gaya tarik?

Karena besarnya gaya pemulih sebanding besarnya pertambahan panjang, maka dapat dirumuskan bahwa:


dengan,
k = konstanta pegas
Fp = Gaya Pemulih (N)
x = Perpanjangan Pegas (m)
Persamaan inilah yang disebut dengan Hukum Hooke. Tanda negatif (-) dalam persamaan menunjukkan berarti gaya pemulih berlawanan arah dengan arah perpanjangan.

Modulus Elastisitas

Yang dimaksud dengan Mosdulus Elastisitas adalah perbandingan antara tegangan dan regangan. Modulus ini dapat disebut dengan sebutan Modulus Young.
Tegangan (Stress)
Tegangan adalah gaya per satuan luas penampang. Satuan tegangan adalah N/m2 Secara matematis dapat dituliskan:

Regangan (Strain)
Regangan adalah perbandingan antara pertambahan panjang suatu batang terhadap panjang awal mulanya bila batang itu diberi gaya. Secara matematis dapat dituliskan:



Dari kedua persamaan di atas dan pengertian modulus elastisitas, kita dapat mencari persamaan untuk menghitung besarnya modulus elastisitas, yang tidak lain adalah:

Satuan untuk modulus elastisitas adalah N/m2
Gerak Benda di Bawah Pengaruh Gaya Pegas

Bila suatu benda yang digantungkan pada pegas ditarik sejauh x meter dan kemudian dilepas, maka benda akan bergetar. Percepatan getarnya itu dapat dihitung dengan persamaan:

Dari persamaan di atas, kita mengetahui bahwa besarnya percepatan getar (a) sebanding dan berlawanan arah dengan simpangan (x)


Simpangan, Kecepatan, dan Percepatan GHS
Simpangan GHS

Untuk menghitung besarnya simpangan pada gerak harmonis sederhana digunakan rumus:
atau
Bila besarnya sudut awal (Θ 0) adalah 0 maka persamaan simpangannya menjadi:

dengan:
y = simpangan (m)
A = amplitudo atau simpangan maksimum (m)
t = waktu getar (s)
w = kecepatan sudut (rad/s)

Simpangan akan bernilai maksimum (ymaks) jika sin wt = 1 sehingga persamaannya menjadi:


Kecepatan GHS

Besarnya kecepatan gerak harmonis dapat dicari dengan persamaan:

Besarnya kecepatan akan mencapai nilai maksimun bila besarnya cos wt = 1, sehingga persamaannya menjadi:


Percepatan GHS

Besarnya percepatan pada gerak harmonis sederhana dapat dihitung dengan rumus:
atau
Dan besarnya percepatan akan mencapai nilai maksimal apabila besarnya sin wt = 1, sehingga:

Besarnya percepatan bernilai negatif menunjukkan arah percepatan a berlawanan dengan arah perpindahan y (y adalah perpindahan dari titik keseimbangan)


Sudut Fase, Fase, dan Beda Fase GHS

Berdasarkan dari persamaan simpangan:

bila diturunkan akan menjadi,

Faktor Θ disebut sudut fase, yaitu posisi sudut selama benda bergerak harmonis.


Fase atau tingkat getar adalah sudut fase dibagi dengan sudut tempuh selama satu putaran penuh. Sehingga besarnya fase dapat dihitung dari persamaan:

Nilai fase biasanya hanya diambil bilangan pecahannya saja Misalkannya saja besarnya fase getaran adalah 1/4, 11/4, 21/4 maka besarnya fase cukup disebut 1/4 saja karena posisi partikel yang bergetar untuk ketiga fase getar tersebut sama. Bilangan bulat di depan pecahan, menunjukkan banyaknya getaran penuh yang terlewati.

Pembahasan tentang fase dibagi menjadi dua, yaitu:
Beda fase getaran suatu titik dengan selang waktu t= t1 dan t= t2
Persamaan yang dipakai untuk menghitung besarnya beda fase dengan selang waktu dari t1 sampai t2 adalah:

Beda fase dua getaran pada waktu sama
Kita juga dapat menghitung beda fase dua getaran pada waktu yang sama. Misalkan dua getaran masing - masing dengan periode T1 dan T2 maka beda fase keduanya setelah bergetar selama t sekon dapat dicari dengan persamaan:

Dua kedudukan tersebut akan dikatan sefase bila nilai beda fase merupakan bilangan cacah (tanpa pecahan ataupun desimal). Sebaliknya kedudukan akan dikatakan berlawanan fase apabila nilai beda fase berupa bilangan cacah+1/2(dengan pecahan ataupun desimal).

Superposisi Dua Simpangan Gerak Harmonis yang Segaris

Jika ada dua persamaan simpangan yang dialami oleh suatu partikel pada saat yang sama, maka simpangan akibat kedua getaran dapat dicaari dengan dua cara, yaitu secara grafis dan secara maematis. Berikut adalah pembahasan mengenai kedua cara tersebut.
Secara Grafis

Berikut adalah gambar Superposisi dua gerak harmonis sederhana,


Secara Matematis

Dalam perhitungan secara matematis dua gerak harmonis memiliki simpangannya masing - masing. Untuk mencari simpangan superposisinya maka kedua simpangan itu dijumlahkan (y = y1 + y2) sehingga didapatkan persamaan sebagai berikut:


Penurunan Rumus Periode (T) dan Frekuensi (f)

Dalam pembahasan suba bab ini, kita akan membahasa mengenai Periode (T) dan frekuensi (f). Dalam bahasan ini, akan membahas pula mengenai gaya pemulih. Karena itu, pembahasannya akan dibatasi hanya sampai pada pegas dan ayunan sederhana.
Pegas

Dalam pegas untuk perhitungan Periodenya digunakan rumus:

sedangkan besarnya frekuensi berbanding terbalik dengan periodenya ( f = 1/T), sehingga didapatkan rumus frekuensi sebagai berikut:

dengan,
m = massa beban (kg)
k = konstanta pegas (N/m)
Sedangkan bila konstanta pegas belum diketahui, konstatanya dapat dihitung dengan persamaan:

dengan,
g = gaya gravitasi (9,8 N/kg atau 10 N/kg)
x = perpanjangan pegas (m)
Bila pegas yang dipakai lebih dari satu, maka untuk mencari konstantanya harus menggunakan konstanta total. Untuk menghitung konstanta total tergantung dari rangkaian pegas itu sendiri. Bila beberapa pegas dirangkai secara seri, maka untuk mencari konstanta totalnya mengunakan rumus:

Sedangkan untuk pegas yang dirangkai paralel mengunakan rumus:


Ayunan Sederhana

Sedangkan dalam ayunan sederhana untuk mencari besarnya Periode digunakan rumus:

Kemudian dalam mencari frekuensi, karena nilai frekuensi berbanding terbalik dengan periode maka didapatkan rumus:

dengan,
l = panjang tali (m)
g = gaya gravitasi bumi (m/s2)



Energi pada Gerak Harmonik Sederhana
Monday Oct 13,2008 05:36 PM By san In getaran

Pada Gerak Harmonik Sederhana, gaya yang bekerja pada benda dan pegas tidak tetap alias selalu berubah-ubah. Oleh karenanya, lebih mudah jika kita menggunakan pendekatan energi. Untuk menekan atau meregangkan pegas, kita memberikan energi pada pegas tersebut. Energi yang disimpan pada pegas yang tertekan atau teregang merupakan energi potensial. Ketika pegas yang kita tekan atau kita regangkan dilepaskan, maka energi potensial pegas berubah menjadi energi kinetik. Demikian juga pada ayunan sederhana. Ketika benda yang digantungkan pada seutas tali kita simpangkan sampai jarak tertentu dari posisi setimbangnya, pada benda tersebut terdapat Energi Potensial. Jika ayunan dilepaskan sehingga benda bergerak, Energi Potensial akan berubah menjadi energi kinetik. Jadi benda yang bergerak harmonik memiliki energi potensial dan energi kinetik. Jumlah total energi potensial dan energi kinetik adalah energi mekanik. Sekarang mari kita tinjau energi pada pegas dan ayunan sederhana.


Energi Potensial pada Pegas

Untuk menghitung energi potensial pada pegas, terlebih dahulu kita hitung kerja alias usaha yang dibutuhkan untuk meregangkan pegas.

Persamaan Usaha adalah W = F s, di mana F adalah gaya dan s adalah perpindahan. Pada pegas, perpindahan adalah simpangan x. Ketika kita menekan atau meregangkan pegas sejauh x, dibutuhkan gaya Fa yang berbanding lurus dengan x. Secara matematis ditulis Fa = kx. Ketika ditekan atau diregangkan, pegas memberikan gaya dengan arah berlawanan (Fb) yang besarnya adalah Fb = -kx.



Untuk menghitung energi potensial dari pegas yang tertekan atau teregang, terlebih dahulu kita hitung usaha atau kerja yang dibutuhkan untuk merentangkannya. Kita tidak bisa menggunakan persamaan usaha W = Fx, karena gaya Fa baik ketika pegas diregangkan maupun ditekan selalu berubah-ubah sepanjang x. (amati gambar di atas). Oleh karena itu kita menggunakan gaya rata-rata. Gaya Fa berubah dari 0 ketika x=0 sampai bernilai kx ketika pegas diregangkan atau ditekan sejauh x.

Gaya rata-rata = F = ½ (0 + kx) = ½ kx. x adalah jarak maksimum pegas yang diregangkan atau ditekan. Usaha alias kerja yang dilakukan adalah :

W = Fa x = (1/2 kx) (x) = ½ kx2

Dengan demikian, nilai Energi Potensial elastis adalah :

EP elastis = ½ kx2


Energi Kinetik pada Pegas

Perlu anda ketahui bahwa Energi Potensial tidak mempunyai suatu persamaan umum yang mewakili semua jenis gerakan. Untuk EP elastis telah kita turunkan pada pembahasan di atas. Berbeda dengan EP, persamaan EK bersifat umum untuk semua jenis gerakan. Energi Kinetik dimiliki benda ketika bergerak.

Besar energi kinetik adalah :

EK = ½ mv2

m adalah massa benda dan v adalah kecepatan gerak benda.


Jumlah total Energi Kinetik dan Energi Potensial dari pegas adalah Energi Mekanik. Energi tersebut bernilai tetap alias kekal. Secara matematis ditulis :

EM = EP + EK


Sekarang, mari kita tinjau lebih mendalam hukum kekekalan energi mekanik pada pegas. Getaran pegas terdiri dari dua jenis, yakni getaran pegas yang diletakan secara horisontal dan getaran pegas yang digantungkan secara vertikal.


HUKUM KEKEKALAN ENERGI MEKANIK PADA PEGAS


Pegas yang diletakan horisontal

Misalnya kita letakan sebuah pegas di atas permukaan meja. Salah satu ujung pegas telah diikat pada dinding, sehingga pegas tidak bergeser ketika digerakan. Anggap saja permukaan meja sangat licin dan pegas yang kita gunakan adalah pegas ideal sehingga memenuhi hukum Hooke. Sekarang kita kaitkan sebuah benda pada salah satu ujung pegas.



Jika benda kita tarik ke kanan sehingga pegas teregang sejauh x, maka pada benda bekerja gaya pemulih pegas, yang arahnya berlawanan dengan arah tarikan kita. Ketika benda berada pada simpangan x, EP benda maksimum sedangkan EK benda nol (benda masih diam).



Ketika benda kita lepaskan, gaya pemulih pegas menggerakan benda ke kiri, kembali ke posisi setimbangnya. EP benda menjadi berkurang dan menjadi nol ketika benda berada pada posisi setimbangnya. Selama bergerak menuju posisi setimbang, EP berubah menjadi EK. Ketika benda tepat berada pada posisi setimbang (x = 0), gaya pemulih pegas bernilai nol tetapi pada titik ini kecepatan benda maksimum. Karena kecepatannya maksimum, maka ketika berada pada posisi setimbang, EK bernilai maksimum.



Benda masih terus bergerak ke kiri karena ketika berada pada posisi setimbang karena benda memiliki kecepatan yang bernilai maksimum. Ketika bergerak ke kiri, Gaya pemulih pegas menarik benda kembali ke posisi setimbang, sehingga benda berhenti sesaat pada simpangan sejauh -x dan bergerak kembali menuju posisi setimbang. Ketika benda berada pada simpangan sejauh -x, EK benda = 0 karena kecepatan benda = 0. pada posisi ini EP bernilai maksimum.



Pada penjelasan di atas, tampak bahwa ketika bergerak dari posisi setimbang menuju ke kiri sejauh x = -A (A = amplitudo/simpangan terjauh), kecepatan benda menjadi berkurang dan bernilai nol ketika benda tepat berada pada x = -A. Karena kecepatan benda berkurang, maka EK benda juga berkurang dan bernilai nol ketika benda berada pada x = -A. Akibat adanya gaya pemulih pegas yang menarik benda kembali ke kanan (menuju posisi setimbang), benda memperoleh kecepatan dan Energi Kinetiknya lagi. EK benda bernilai maksimum ketika benda tepat berada pada x = 0, karena laju gerak benda pada posisi tersebut bernilai maksimum. Proses perubahan energi antara EK dan EP berlangsung terus menerus selama benda bergerak bolak balik. Total EP dan EK selama benda bergetar besarnya tetap alias kekal bin konstan.


Pegas yang diletakan vertikal


Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda (gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal). Mari kita tinjau lebih jauh Kekekalan Energi Mekanik pada pegas yang digantungkan secara vertikal…



Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang.

Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Mari kita analisis secara matematis…



Gurumuda tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak.

Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang (perhatikan gambar c di bawah).



Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Ketika benda kita diamkan sesaat (belum dilepaskan), EP benda bernilai maksimum sedangkan EK = 0. EP maksimum karena benda berada pada simpangan sejauh x. EK = 0 karena benda masih diam.

Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. (sambil lihat gambar c di bawah ya).



Ketika mencapai titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks). Pada posisi ini, EK bernilai maksimum, sedangkan EP = 0. EK maksimum karena v maks, sedangkan EP = 0, karena benda berada pada titik setimbang (x = 0).

Karena pada posisi setimbang kecepatan gerak benda maksimum, maka benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun akibat adanya gaya berat yang menarik benda ke bawah, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Ketika benda berada pada simpangan sejauh -x, EP bernilai maksimum sedangkan EK = 0. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Selama benda bergerak, selalu terjadi perubahan energi antara EP dan EK. Energi Mekanik bernilai tetap. Ketika benda berada pada titik kesetimbangan (x = 0), EM = EK. Ketika benda berada pada simpangan sejauh -x atau +x, EM = EP.




Energi Potensial sebuah pegas dengan konstanta gaya k yang teregang sejauh x dari kesetimbangannya dinyatakan dengan persamaan :

EP = ½ kx2

Energi Kinetik sebuah benda bermassa m yang bergerak dengan kelajuan v ialah :

EK = ½ mv2

Energi Total (Energi Mekanik) adalah jumlah Energi Potensial dan Energi Kinetik :

EM = EP + EK = ½ kx2 + ½ mv2


Ketika benda berada pada simpangan maksimum, x = A (A = Amplitudo), kecepatan benda = 0, sehingga Energi Mekanik benda :

EM = ½ kA2


Persamaan ini memberikan sifat umum penting yang dimiliki Gerak Harmonik Sederhana (GHS) : Energi total pada Gerak Harmonik Sederhana berbanding lurus dengan kuadrat amplitudo.


USAHA


Usaha alias Kerja yang dilambangkan dengan huruf W (Work-bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut.

Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang searah dengan perpindahan.




Persamaan matematisnya adalah :

W = Fs cos 0 = Fs (1) = Fs

W adalah usaha alias kerja, F adalah besar gaya yang searah dengan perpindahan dan s adalah besar perpindahan.


Apabila gaya konstan tidak searah dengan perpindahan, sebagaimana tampak pada gambar di bawah, maka usaha yang dilakukan oleh gaya pada benda didefinisikan sebagai perkalian antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Komponen gaya yang searah dengan perpindahan adalah F cos teta





Secara matematis dirumuskan sebagai berikut :


Hasil perkalian antara besar gaya (F) dan besar perpindahan (s) di atas merupakan bentuk perkalian titik atau perkalian skalar. Karenanya usaha masuk dalam kategori besaran skalar. Pelajari lagi perkalian vektor dan skalar kalau dirimu bingun… Persamaan di atas bisa ditulis dalam bentuk seperti ini :


Satuan Usaha dalam Sistem Internasional (SI) adalah newton-meter. Satuan newton-meter juga biasa disebut Joule ( 1 Joule = 1 N.m). menggunakan sistem CGS (Centimeter Gram Sekon), satuan usaha disebut erg. 1 erg = 1 dyne.cm. Dalam sistem British, usaha diukur dalam foot-pound (kaki-pon). 1 Joule = 107 erg = 0,7376 ft.lb.


Perlu anda pahami dengan baik bahwa sebuah gaya melakukan usaha apabila benda yang dikenai gaya mengalami perpindahan. Jika benda tidak berpindah tempat maka gaya tidak melakukan usaha. Agar memudahkan pemahaman anda, bayangkanlah anda sedang menenteng buku sambil diam di tempat. Walaupun anda memberikan gaya pada buku tersebut, sebenarnya anda tidak melakukan usaha karena buku tidak melakukan perpindahan. Ketika anda menenteng atau menjinjing buku sambil berjalan lurus ke depan, ke belakang atau ke samping, anda juga tidak melakukan usaha pada buku. Pada saat menenteng buku atau menjinjing tas, arah gaya yang diberikan ke atas, tegak lurus dengan arah perpindahan. Karena tegak lurus maka sudut yang dibentuk adalah 90o. Cos 90o = 0, karenanya berdasarkan persamaan di atas, nilai usaha sama dengan nol. Contoh lain adalah ketika dirimu mendorong tembok sampai puyeng… jika tembok tidak berpindah tempat maka walaupun anda mendorong sampai banjir keringat, anda tidak melakukan usaha. Kita dapat menyimpulkan bahwa sebuah gaya tidak melakukan usaha apabila gaya tidak menghasilkan perpindahan dan arah gaya tegak lurus dengan arah perpindahan.


Contoh Soal 1 :

Sebuah peti kemas bermassa 50 kg yang terletak pada lantai ditarik horisontal sejauh 2 meter dengan gaya 100 N oleh seorang buruh pelabuhan. Lantai tersebut agak kasar sehingga gaya gesekan yang diberikan pada karung beras sebesar 50 N. Hitunglah usaha total yang dilakukan terhadap karung berisi beras tersebut…




Panduan jawaban :

Sebelum menghitung usaha total, terlebih dahulu kita hitung usaha yang dilakukan oleh buruh karung dan usaha yang dilakukan oleh gaya gesekan. Kita tetapkan arah kanan bertanda positif sedangkan arah kiri negatif. (b = buruh, Fg = gaya gesekan, N = gaya normal, w = berat). Gaya gesekan berlawanan arah dengan arah gerakan benda sehingga bertanda negatif.

Pada soal di atas, terdapat empat gaya yang bekerja pada peti kemas, yakni gaya tarik buruh (searah dengan perpindahan peti kemas), gaya gesekan (berlawanan arah dengan perpindahan peti), gaya berat dan gaya normal (tegak lurus arah perpindahan, sudut yang terbentuk adalah 90o).

Untuk mengetahui usaha total, terlebih dahulu kita hitung besar usaha yang dilakukan masing-masing gaya tersebut.

Usaha yang dilakukan oleh buruh pelabuhan :

Wb = Fb.s = (100 N) (2 m) = 200 N.m

Usaha yang dilakukan oleh Gaya gesekan :

Wg = Fg.s =- (50 N) (2 m) = -100 N.m

Usaha yang dilakukan oleh gaya berat :

Ww = Fw.s = (mg) (2 m) cos 90o = 0

Usaha yang dilakukan oleh gaya normal :

WN = FN.s = (mg) (2 m) cos 90o = 0


Usaha total = Wb + Wg + Ww + WN = (200 N.m) + (-100 N.m) + 0 + 0 = 100 N.m = 100 Joule


Contoh Soal 2 :

Seorang anak menarik mobil mainan menggunakan tali dengan gaya sebesar 20 N. Tali tersebut membentuk sudut 30o terhadap permukaan tanah dan besar gaya gesekan tanah dengan roda mobil mainan adalah 2 N. Jika mobil mainan berpindah sejauh 10 meter, berapakah usaha yang dilakukan anak tersebut ?




Panduan jawaban :

Pada dasarnya soal ini sama dengan contoh soal 1. Pada soal ini terdapat sudut yang dibentuk antara gaya dengan arah horisontal, sehingga komponen gaya tarik yang dipakai adalah F cos teta (sejajar dengan arah perpindahan)

Untuk mengetahui usaha total, terlebih dahulu kita hitung besar usaha yang dilakukan masing-masing gaya : (A = anak, g = gesekan, w = berat dan N = normal)




Usaha yang dilakukan oleh Gaya gesekan :

Wg = Fg.s = (-2 N) (10 m) = -20 N.m

Usaha yang dilakukan oleh gaya berat :

Ww = Fw.s = (mg) (2 m) cos 90o = 0

Usaha yang dilakukan oleh gaya normal :

WN = FN.s = (mg) (2 m) cos 90o = 0


Usaha total :




ENERGI



Segala sesuatu yang kita lakukan dalam kehidupan sehari-hari membutuhkan energi. Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari bahan bakar. Hewan juga membutuhkan energi untuk hidup, sebagaimana manusia dan tumbuhan.

Energi merupakan salah satu konsep yang paling penting dalam fisika. Konsep yang sangat erat kaitannya dengan usaha adalah konsep energi. Secara sederhana, energi merupakan kemampuan melakukan usaha. Definisi yang sederhana ini sebenarnya kurang tepat atau kurang valid untuk beberapa jenis energi (misalnya energi panas atau energi cahaya tidak dapat melakukan kerja). Definisi tersebut hanya bersifat umum. Secara umum, tanpa energi kita tidak dapat melakukan kerja. Sebagai contoh, jika kita mendorong sepeda motor yang mogok, usaha alias kerja yang kita lakukan menggerakan sepeda motor tersebut. Pada saat yang sama, energi kimia dalam tubuh kita menjadi berkurang, karena sebagian energi kimia dalam tubuh berubah menjadi energi kinetik sepeda motor. Usaha dilakukan ketika energi dipindahkan dari satu benda ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang, tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi bentuk energi lain. Mengenai Hukum Kekekalan Energi akan kita kupas tuntas dalam pokok bahasan tersendiri. (tuh ada linknya di bawah)…..

Dalam kehidupan sehari-hari terdapat banyak jenis energi. Energi kimia pada bahan bakar membantu kita menggerakan kendaraan, demikian juga energi kimia pada makanan membantu makhluk hidup bertahan hidup dan melakukan kerja. Dengan adanya energi listrik, kita bisa menonton TV atau menyalakan komputer sehingga bisa bermain game sepuasnya. Ini hanya beberapa contoh dari sekian banyak jenis energi dalam kehidupan kita. Misalnya ketika kita menyalakan lampu neon, energi listrik berubah menjadi energi cahaya. Energi listrik juga bisa berubah menjadi energi panas (setrika listrik), energi gerak (kipas angin) dan sebagainya. Banyak sekali contoh dalam kehidupan kita, dirimu bisa memikirkan contoh lainnya. Secara umum, energi bermanfaat bagi kita ketika energi mengalami perubahan bentuk, misalnya energi listrik berubah menjadi energi gerak (kipas angin), atau energi kimia berubah menjadi energi gerak (mesin kendaraan).

Pada kesempatan ini kita akan mempelajari dua jenis energi yang sebenarnya selalu kita jumpai dalam kehidupan sehari-hari, yakni energi potensial dan energi kinetik translasi. Energi potensial dapat berubah bentuk menjadi energi kinetik ketika benda bergerak lurus dan sebaliknya energi kinetik juga bisa berubah bentuk menjadi energi potensial. Total kedua energi ini disebut energi mekanik, yang besarnya tetap alias kekal


Usaha (Kerja) Dan Energi
Fisika Kelas 1 > Dinamika 267

<>

Jika sebuah benda menempuh jarak sejauh S akibat gaya F yang bekerja pada benda tersebut maka dikatakan gaya itu melakukan usaha, dimana arah gaya F harus sejajar dengan arah jarak tempuh S.
USAHA adalah hasil kali (dot product) antara gaya den jarak yang ditempuh.
W = F S = |F| |S| cos q

q = sudut antara F dan arah gerak



Satuan usaha/energi : 1 Nm = 1 Joule = 107 erg

Dimensi usaha energi: 1W] = [El = ML2T-2

Kemampuan untuk melakukan usaha menimbulkan suatu ENERGI (TENAGA).

Energi dan usaha merupakan besaran skalar.

Beberapa jenis energi di antaranya adalah:

ENERGI KINETIK (Ek)

Ek trans = 1/2 m v2

Ek rot = 1/2 I w2

m = massa
v = kecepatan
I = momen inersia
w = kecepatan sudut


ENERGI POTENSIAL (Ep)

Ep = m g h

h = tinggi benda terhadap tanah


ENERGI MEKANIK (EM)

EM = Ek + Ep

Nilai EM selalu tetap/sama pada setiap titik di dalam lintasan suatu benda.


Pemecahan soal fisika, khususnya dalam mekanika, pada umumnya didasarkan pada HUKUM KEKEKALAN ENERGI, yaitu energi selalu tetap tetapi bentuknya bisa berubah; artinya jika ada bentuk energi yang hilang harus ada energi bentuk lain yang timbul, yang besarnya sama dengan energi yang hilang tersebut.
Ek + Ep = EM = tetap

Ek1 + Ep1 = Ek2 + Ep2




PRINSIP USAHA-ENERGI

Jika pada peninjauan suatu soal, terjadi perubahan kecepatan akibat gaya yang bekerja pada benda sepanjang jarak yang ditempuhnya, maka prinsip usaha-energi berperan penting dalam penyelesaian soal tersebut

W tot = DEk ® S F.S = Ek akhir - Ek awal

W tot = jumlah aljabar dari usaha oleh masing-masing gaya
= W1 + W2 + W3 + .......

D Ek = perubahan energi kinetik = Ek akhir - Ek awal



ENERGI POTENSIAL PEGAS (Ep)
Ep = 1/2 k D x2 = 1/2 Fp Dx

Fp = - k Dx


Dx = regangan pegas
k = konstanta pegas
Fp = gaya pegas

Tanda minus (-) menyatakan bahwa arah gaya Fp berlawanan arah dengan arah regangan x.

2 buah pegas dengan konstanta K1 dan K2 disusun secara seri dan paralel: seri paralel
1 = 1 + 1
Ktot K1 K2 Ktot = K1 + K2


Note: Energi potensial tergantung tinggi benda dari permukaan bumi. Bila jarak benda jauh lebih kecil dari jari-jari bumi, maka permukaan bumi sebagai acuan pengukuran. Bila jarak benda jauh lebih besar atau sama dengan jari-jari bumi, make pusat bumi sebagai acuan.



Contoh:

1. Sebuah palu bermassa 2 kg berkecepatan 20 m/det. menghantam sebuah paku, sehingga paku itu masuk sedalam 5 cm ke dalam kayu. Berapa besar gaya tahanan yang disebabkan kayu ?

Jawab:

Karena paku mengalami perubahan kecepatan gerak sampai berhenti di dalam kayu, make kita gunakan prinsip Usaha-Energi:

F. S = Ek akhir - Ek awal

F . 0.05 = 0 - 1/2 . 2(20)2

F = - 400 / 0.05 = -8000 N

(Tanda (-) menyatakan bahwa arah gaya tahanan kayu melawan arah gerak paku ).

2. Benda 3 kg bergerak dengan kecepatan awal 10 m/s pada sebuah bidang datar kasar. Gaya sebesar 20Ö5 N bekerja pada benda itu searah dengan geraknya dan membentuk sudut dengan bidang datar (tg a = 0.5), sehingga benda mendapat tambahan energi 150 joule selama menempuh jarak 4m.
Hitunglah koefisien gesek bidang datar tersebut ?

Jawab:

Uraikan gaya yang bekerja pada benda:



Fx = F cos a = 20Ö5 = 40 N

Fy = F sin a = 20Ö5 . 1Ö5 = 20 N

S Fy = 0 (benda tidak bergerak pada arah y)

Fy + N = w ® N = 30 - 20 = 10 N

Gunakan prinsip Usaha-Energi

S Fx . S = Ek

(40 - f) 4 = 150 ® f = 2.5 N

3. Sebuah pegas agar bertambah panjang sebesar 0.25 m membutuhkan gaya sebesar 18 Newton. Tentukan konstanta pegas dan energi potensial pegas !

Jawab:

Dari rumus gaya pegas kita dapat menghitung konstanta pegas:

Fp = - k Dx ® k = Fp /Dx = 18/0.25 = 72 N/m

Energi potensial pegas:

Ep = 1/2 k (D x)2 = 1/2 . 72 (0.25)2 = 2.25 Joule



Daya (Power)
Fisika Kelas 1 > Dinamika 268

<>

DAYA adalah usaha atau energi yang dilakukan per satuan waktu.

P = W/t = F v (GLB)
P = Ek/t (GLBB)

Satuan daya : 1 watt = 1 Joule/det = 107 erg/det
Dimensi daya : [P] = MLT2T-3

Contoh:

Seorang bermassa 60 kg menaiki tangga yang tingginya 15 m dalam waktu 2 menit. Jika g = 10 m/det2, berapa daya yang dikeluarkan orang tersebut?

Jawab:

P = W/t = mgh/t = 60.10.15/2.60 = 75 watt.



Momentum Dan Impuls
Fisika Kelas 1 > Dinamika 269

<>

1. MOMENTUM LINIER (p)

MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.

p = m v

Momentum merupakan besaran vektor, dengan arah p = arah v

2. MOMENTUM ANGULER (L)

MOMENTUM ANGULER adalah hasil kali (cross product) momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.

L = m v R = m w R2
L = p R

Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.

Jika pada benda bekerja gaya F tetap selama waktu t, maka IMPULS I dari gaya itu adalah:
t1
I = ò F dt = F (t2 - t1)
t2

I = Perubahan momentum
Ft = m v akhir - m v awal



Impuls merupakan besaran vektor. Pengertian impuls biasanya dipakai dalam peristiwa besar dimana F >> dan t <<. Jika gaya F tidak tetap (F fungsi dari waktu) maka rumus I = F . t tidak berlaku. Impuls dapat dihitung juga dengan cara menghitung luas kurva dari grafik gaya F vs waktu t. Hukum Kekekalan Momentum Fisika Kelas 1 > Dinamika 270

<>

HUKUM KEKEKALAN MOMENTUM

Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2.

Jika dua benda A dan B dengan massa masing-masing MA dan MB serta kecepatannya masing-masing VA dan VB saling bertumbukan, maka :

MA VA + MB VB = MA VA + MB VB

VA dan VB = kecepatan benda A dan B pada saat tumbukan

VA dan VB = kecepatan benda A den B setelah tumbukan.



Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif.

Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,

a. ELASTIS SEMPURNA : e = 1

e = (- VA' - VB')/(VA - VB)

e = koefisien restitusi.
Disini berlaku hukum kokokalan energi den kokekalan momentum.

b. ELASTIS SEBAGIAN: 0 < e =" h'/h" h =" tinggi" e =" 0" vb =" (MA" g =" 10" ep =" Ek" h =" 1/2" v2 =" 2" v =" Ö2" i =" F" dt =" m" dv =" 0.1Ö2gh" 6 =" 0,6" e =" Ö(h'/h)" impuls =" F" t =" m" g =" percepatan" m2vb =" (M1" 0 =" (M1" va =" [(M1" emb =" EMC" ekb =" EpC" v2 =" (M1" va =" [(M1">


Secara matematis, versi momentum dari Hukum II Newton dapat dinyatakan dengan persamaan :



Catatan = lambang momentum adalah p kecil, bukan P besar. Kalau P besar itu lambang daya. p dicetak tebal karena momentum adalah besaran vektor.


Dari persamaan ini, kita bisa menurunkan persamaan Hukum II Newton “yang sebenarnya” untuk kasus massa benda konstan alias tetap.

Sekarang kita tulis kembali persamaan di atas :



Gampang khan ? ini adalah persamaan Hukum II eyang Newton untuk kasus massa benda tetap, yang sudah kita pelajari pada pokok bahasan Hukum II Newton. Gurumuda menyebutnya di atas sebagai Hukum II Newton “yang sebenarnya”.

Terus apa bedanya penggunaan hukum II Newton “yang sebenarnya” dengan hukum II Newton versi momentum ? Hukum II Newton versi momentum di atas lebih bersifat umum, sedangkan Hukum II Newton “yang sebenarnya” hanya bisa digunakan untuk kasus massa benda tetap. Jadi ketika menganalisis hubungan antara gaya dan gerak benda, di mana massa benda konstan, kita bisa menggunakan Hukum II Newton “yang sebenarnya”, tapi tidak menutup kemungkinan untuk menggunakan Hukum II Newton versi momentum. Ketika kita meninjau benda yang massa-nya tidak tetap alias berubah, kita tidak bisa menggunakan Hukum II Newton “yang sebenarnya” (F = ma). Kita hanya bisa menggunakan Hukum II Newton versi momentum. Contohnya roket yang meluncur ke ruang angkasa. Massa roket akan berkurang ketika bahan bakarnya berkurang atau habis. Paham khan ?


Nah, sekarang mari kita jalan-jalan menuju Impuls…


Hubungan antara Momentum dan Impuls

Pernahkah dirimu dipukul teman anda ? kok ngajak berantem sih… coba lakukan percobaan impuls dan momentum berikut… pukul tangan seorang temanmu menggunakan jari anda. Tapi jangan yang keras ya… gurumuda tidak mengajarkan dirimu untuk melakukan kekerasan. Gunakan ujung jari anda. Coba tanyakan kepada temanmu, mana yang lebih terasa sakit; ketika dipukul dengan cepat (waktu kontak antara jari pemukul dan tangan yang dipukul sangat singkat) atau ketika dipukul lebih lambat (waktu kontak antara jari pemukul dan tangan yang dipukul lebih lambat). Kalau dilakukan dengan benar (besar gaya sama), biasanya yang lebih sakit adalah ketika tanganmu dipukul dengan cepat. Ketika dirimu memukul tangan temanmu, tangan dirimu dan tangan temanmu saling bersentuhan, dalam hal ini saling bertumbukan.

Ketika terjadi tumbukan, gaya meningkat dari nol pada saat terjadi kontak dan menjadi nilai yang sangat besar dalam waktu yang sangat singkat. Setelah turun secara drastis menjadi nol kembali. Ini yang membuat tangan terasa lebih sakit ketika dipukul sangat cepat (waktu kontak antara jari pemukul dan tangan yang dipukul sangat singkat).

Hukum II Newton versi momentum yang telah kita turunkan di atas menyatakan bahwa laju perubahan momentum suatu benda sama dengan gaya total yang bekerja pada benda tersebut. Besar gaya yang bekerja pada benda yang bertumbukan dinyatakan dengan persamaan :



Ingat bahwa impuls diartikan sebagai gaya yang bekerja pada benda dalam waktu yang sangat singkat. Konsep impuls membantu kita ketika meninjau gaya-gaya yang bekerja pada benda dalam selang waktu yang sangat singkat. Misalnya ketika ronaldinho menendang bola sepak, atau ketika tanganmu dipukul dengan cepat.

Pengertian Getaran Dan Persamaan Getaran Harmonis
Fisika Kelas 2 > Gelombang Dan Bunyi 288

<>

PENGERTIAN GETARAN-
Getaran selaras adalah gerak proyeksi sebuah titik yang bergerak melingkar beraturan, yang setiap saat diproyeksikan pada salah satu garis tengah lingkaran. Gaya yang bekerja pada gerak ini berbanding lurus dengan simpangan benda dan arahnya menuju ke titik setirnbangnya.
-
Getaran selaras sederhana adalah gerak harmonis yang grafiknya merupakan sinusoidal dengan frekuensi dan amplitudo tetap.
-
Perioda atau waktu getar (T) adalah selang waktu yang diperlukan untuk melakukan satu getaran lengkap(detik).
- Freknensi (f) adalah jumlah getaran yang dilakukan dalam satu detik (Hertz).

Hubungan freknensi dan perioda: f = 1/T



PERSAMAAN GETARAN HARMONISSimpangan (y) Kecepatan (Vy) Percepatan (ay)

y = A Sin q
= A Sin w t Vy = dy/dt
= wA cos wt
ay = dvy/dt
=d2y/dt2
= -w2A sin wt

ay = -w2y

A = ampiltudo
getaran
w = kecepatan
anguler
w = 2 pf = 2p/T
ymaks = A
(di titik tertinggi )
q = wt = 2pt/T
= sudut fase

vy maks = wA
(dititik terendah/titik setimbang) ay maks = w2
(pada saat membalik di titik tertinggi)



Fase, Beda Fase Dan Gaya Penyebab Getaran Harmonis
Fisika Kelas 2 > Gelombang Dan Bunyi 289

<>

Fase Getaran : F = t/T= q/360 = q/2p Tidak bersatuan

Beda Fase : DF = F1 - F2 Selisih fase antara due titik yang melakukan getaran selaras

Catatan :
0 < f =" 1" f =" 3/4," q=" 2p.3/4" f =" 2" f=" 1/3," q =" 2p.1/3" f =" m.ay" f =" -m.w2.y">

Energi Getaran Harmonis Dan Contohnya
Fisika Kelas 2 > Gelombang Dan Bunyi 290

<>

Energi kinetik (Ek) : F = t/T= q/360 = q/2p

Energi potensial (Ep) : DF = F1 - F2
Catatan : 0 £ F £ 1
jika F = 1 ¾ dapat ditulis F = ¾, sehingga q = 2p.¾ = 270°
jika F = 2 1/3 dapat ditulis F = ¾, sehingga q = 2p.¾ = 270°

Energi mekanis (EM) : F = m.ay
F = - mw².y = -K.y

CONTOH GETARAN HARMONISEnergi Kinetik (Ek)
Energi Potensial (Ep)
Energi Mekanik (EM) =
=
= ½ m.v² = ½ m.w².A² COS² w.t
½ K.y² = ½ m.w².A² sin² w.t
Ek + Ep = ½ m.w².A²


1. Bandul Sederhana


2. Benda tergantung pada pegas



Perioda Bandul (T)

T = 2p Ö(l/g)
Tidak tergantung massa benda

Gaya Pemulih (F)

F = w sin q
Periode pegas (T)

T = 2p Ö(m/k)


2. Benda tergantung pada pegas

Contoh 1.
Suatu titik materi bergetar harmonis dan menghasilkan energi kinetik sama dengan tiga kali energi potensialnya. Berapakah sudut simpangan pada saat itu ?

Jawab

Ek 3Ep ® ½ mw²A² cos² q = 3. ½ mw²A² Sin²q

[sin q/cos q]² = 1/3 ® tg q = 1/Ö3 ® q = 30°

Contoh 2.
Perioda sebuah ayunan sederhana di permukaan bumi adalah T detik. Bila ayunan ini berada pada suatu ketinggian yang percepatan gravitasinya ¼ percepatan gravitasi di permukaan bumi, maka perioda ayunan menjadi berapa T ?

Periode ayunan : T = 2p Ö(l/g) ® T » Ö(l/g)

T/T= Ö[(l/g')/(l/g)] = Ö(g/g') = Ö(1/¼) = Ö4 = 2 ®T' = 2T

Tidak ada komentar:

Poskan Komentar